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Abstract
This dissertation explains the work that was undertaken to investigate the fac-
tors that affect the performance of models trained using transfer learning. It
outlines how the relationship between two languages were quantified and how
this data was used to derive several quantifiable metrics to be used for the
analysis. The dissertation then explains how several scripts and tools were
developed to enable transfer learning to be used in the process of training a
range of models. The models combined with the metrics extracted from the
relationships enabled different factors that affect the performance of the models
to be analysed. In total, 29 models were trained and 25 of these were trained
for lower-resourced languages. State-of-the-art models were achieved for Breton
and Romansh, while the first monolingual Galician models were trained. Effec-
tive models comparable to the state-of-the-art were also trained for both Welsh
and Portuguese. While the findings could not definitively show any correlations
between the performance of the models and the relationship between the base
and target language, other factors were uncovered and exhibited statistically sig-
nificant correlations. The dissertation shows that there is a correlation between
a base model’s ability to perform its own learning task and the performance of
the models that used this model as a base.
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Chapter 1

Introduction

Good acoustic models require large amounts of data, and there is often a rela-
tionship between the amount of training data and the performance of models.
This is a problem for lower-resourced languages as data is expensive and hard
to come by, especially spoken data, and the data required to make language
models is often quite substantial. However, with new techniques, there are op-
portunities to create base models based on a different language and use these
as a foundation on which further training can be done. This process is called
transfer learning. The idea is that these bilingual and multilingual models can
be used to create models for lower-resourced languages in situations where there
is not enough data available to create a model from scratch.

This dissertation seeks to investigate transfer learning for speech-to-text in
greater depth. It will attempt to evaluate the viability of this approach and how
it compares to other methods. It will also investigate what factors contribute
to the quality of speech-to-text models and attempt to determine what role the
selection of language has on the overall quality of the models.

1.1 Background and Motivation
Lower-resourced languages like Welsh and Breton have long struggled with lim-
ited available data when trying to create effective acoustic models. A digital
presence and effective models are vital for lower-resourced languages and for
ensuring that they do not become digitally extinct. However, many languages
simply do not have the available data to produce effective models from scratch.
It is therefore of vital importance to investigate in what ways the limited data
can be utilised as effectively as possible. By improving the optimisation of
data utilisation, the barrier of entry for technologies like speech-to-text can be
lowered, enabling a range of languages to benefit from these technologies.

While the factors that contribute to effective transfer learning models have
been explored in other domains, this has not been explored in-depth in the
context of speech-to-text. Since acquiring speech data is expensive and time-
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consuming, this is especially problematic for lower-resource languages since they
have low amounts of data and requires effective data utilisation. For example,
one area where existing literature falls short is in answering what effect the
choice of base language has on the effectiveness of the transfer learning process.
The choice of base language has been shown in other domains to play a not
insignificant role in determining the effectiveness of transfer learning.

Attempting to answer these questions and explore ways to optimise the ef-
fectiveness of transfer learning is therefore an important step toward improving
models for lower-resourced languages. Achieving this and ensuring that lower
resources languages are able to better utilise the data that is available to them
remain the underlying motivations for this dissertation.

1.2 Aim and Objectives
The overarching aim of this dissertation is to improve speech-to-text models
for lower-resourced languages and to explore ways of optimising data utilisation
for transfer learning. To achieve this, the dissertation aims to answer some
unanswered questions in regard to what impact the relationship between the
base language and target language has on the effectiveness of transfer learning.
By investigating this, the dissertation aims to uncover whether it is possible to
improve the utilisation and effectiveness of available data for minority and lower-
resourced languages. By doing this, the dissertation aims to lower the barrier of
entry for these languages enabling them to have effective speech-to-text models
and to thrive in the digital world despite their lower-resourced status.

To achieve this aim, several concrete objectives will have to be achieved.
These objectives are:

1. Create a way of extracting information from the training set to quantify
the relationship between two languages.

2. Train bespoke and novel models for several lower-resourced languages us-
ing transfer learning.

3. Investigate whether there is a correlation between the relationship between
the languages and the performance of the models.

4. Explore whether there are any other contributing factors that affect the
performance of the models.

1.3 Contributions
This dissertation has answered several unanswered questions in relation to trans-
fer learning and uncovered some potential contributing factors as to what makes
transfer learning effective. The findings in this dissertation enable transfer learn-
ing to be more effectively utilised, and for more effective models to be developed



in the future. This has the effect of lowering the barrier of entry to speech-to-
text technologies for lower-resourced languages.

The dissertation produced a wide range of speech-to-text models for a total of
five languages: Welsh; Breton; Romansh; Galician; and Portuguese. In addition
to these, two models were produced for both French and German. In total,
the dissertation produced four base models and 25 target models. Most of
the models were comparable with the available state-of-the-art models, with
many of the models also outperforming the state-of-the-art significantly. Major
improvements were achieved for speech-to-text models for Breton and Romansh,
and what appears to be the first monolingual speech-to-text models for Galician
were developed.

The dissertation also shows that by using transfer learning effectively, small
teams with limited resources can effective speech-to-text models that are usable
by their communities. The methodology laid out in this dissertation provides a
tangible way for effective models to be developed for smaller and lower-resourced
languages. This is a real impact on enabling these languages to survive and
thrive in the digital world and helps prevent them from going digitally extinct.

1.4 Summary of Dissertation
The next chapter provides an overview of existing literature, technologies, and
advances within the field. By exploring the state-of-the-art frameworks within
speech-to-text and transfer learning, the chapter highlights where existing re-
search falls short and why the topic that this dissertation covers is an area that
should be investigated further.

Chapter 3 will formulate the research questions and hypotheses that this
dissertation will investigate. The methodology that the dissertation will use to
investigate these will also be described including definitions for any required
metrics.

Chapter 4 will describe any work that was undertaken to preprocess the
data before any of the models are trained. An analysis will be carried out
into how well Common Voice utilises the available data, and determine whether
this needs to be improved. Then we will explore how we can extract metrics
from the training data in an attempt to measure how close two languages are
to each other phonetically. These metrics can then later be used to analyse
whether there are correlations between these metrics and the performance of
the models.

In chapter 5, we will use transfer learning to create a set of novel models for
Welsh and Breton. To achieve this a training environment and several scripts
have to be created to aid the training process. Following this, several several
base models will be created for both English and French. Using these models a
total of three models for both Welsh and Breton can be created.

Using the metrics extracted in chapter 4, the performance of these models
will then be analysed and we will see whether there is correlation between these
metrics and the performance of the models. We will also consider other aspects



of the transfer learning process to investigate whether there is anything else that
we can learn about this process.

Due to the results uncovered in chapter 5, chapter 6 will expand the experi-
ment by including a set of new languages; German, Romansh, Portuguese, and
Galician. Using the additional data gather by increasing the sample size, we are
able to undertake a more robust analysis than what was possible in the original
analysis.

The final chapter will summarise the findings, discuss some of the impli-
cations of these, and discuss topics that should be investigated further in the
future.



Chapter 2

Literature Review

In this chapter, we will review the existing literature and the current state-of-
the-art speech-to-text (STT) systems. In addition to this, we will look at how
existing literature falls short of answering some important questions in regard
to how transfer learning for speech-to-text could be further optimised. We will
also review existing resources that provide a basis for speech-to-text systems
to be built on, and how these compare to other options available. Finally, this
chapter will also lay out the research questions that this dissertation seeks to
investigate and the methodology that will be used.

2.1 Speech-to-Text
Speech-to-text is the process of transcribing speech into written words. This is
useful in many domains, and as noted by Jones (2022), it is not only transform-
ing how people interact with digital content but also improving accessibility for
people with disabilities in the digital world. Whether that be through automatic
subtitling or speech assistants, many technologies rely on effective and accurate
automatic speech recognition models.

Speech-to-text generally works by transforming audio into a spectrogram
representation of the audio. This data can then be processed by an artificial
neural network as a numeric series of data. The model that transforms this
raw data into its textual representation, known as the acoustic model, is a
foundational part of any speech-to-text system.

This process often makes use of the beam search algorithm. Similarly to the
Viterbi algorithm, the beam search algorithm calculates the probability that a
certain timeframe corresponds to each letter based on the output of the neural
network and based on previous timesteps. The beam width is the variable
that determines how far back the algorithm looks, the higher the beam width
the further back it looks. Using a higher beam width will improve the overall
performance of the algorithm but would use a significant amount of memory
and computing power (Farhat, 2022).
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Coqui and other systems often allow for an additional language model to be
used to aid the beam search algorithm. This language model is trained on raw
text and is used to improve the probabilities for certain characters following each
other and helps to fix any misspelt words. The addition of a language model
tends to improve the word error rate (WER) but generally does not improve the
character error rate (CER) (see section 3.2.1 for the definition of these metrics).
For example, Coqui (Coqui AI, 2022) uses a recursive neural network (RNN)
for its acoustic model and allows for the addition of a KenLM language model
(Heafield, 2011) to be used to aid the model during the beam search phase.

2.2 Phonology of Breton and Welsh
To understand the purpose of this project, it is important to understand some
fundamental aspects of the phonology of both Breton and Welsh, and most
importantly how they compare to the phonology of French and English. Both
Breton and Welsh are Brythonic languages, having evolved out of Common Bry-
thonic from the late fifth century and mid-sixth century (Willis, 2009). Despite
the languages sharing a common origin, they have developed far enough apart
that they are no longer mutually intelligible (Sims-Williams, 2015). One of the
contributing reasons for this is the contact that Breton has had with French
and Welsh has had with English. The syntax, morphology, and phonology of
Breton have been influenced by French while Welsh has been influenced by En-
glish. A noticeable example of this is that French and Breton are among the
few languages in Europe that have nasal vowels, while English and Welsh both
lack these phonemes (Sims-Williams, 2015).

2.2.1 Phonology of Breton
Breton has a large and wide-ranging phonemic inventory. According to Hemon
and Everson (2011) it has 30 consonants, some of which are devoiced in certain
circumstances. It also has at least 11 vowels, most of which can also be elongated
when stressed. In contrast to French where only four vowels can be nasalised
(ɑ, ɛ, ɔ, œ), all Breton vowels can be nasalised. In total that means that Breton
has somewhere between 60 and 70 different phonemes in its phonemic inventory.
This is a substantial amount, especially when compared to languages such as
Welsh which has around 40 when only counting consonants and monophthongs
(Cooper et al., 2019).

The phonology of Breton has been influenced a substantial amount by French
over the years. There are many examples of this, most notably in the phonetics
of the language and the shared phonemic inventory of the languages. While
some dialects of Breton such as Leoneg pronounce “r” using the apical trill r,
many dialects use the uvular trill ʁ instead (Hemon and Everson, 2011). This
sound, also called the guttural r, is found in standard French as well. This is in
contrast to English and Welsh which uses other types of rhotics like trills r, taps
ɾ, and retroflex approximants ɹ. Note that taps ɾ and retroflex approximants ɹ



and found in parts of Tregerieg as well (Hemon and Everson, 2011).
Another notable feature of Breton is its nasalised vowels. As mentioned

above, all vowels in Breton can be nasalised. This is not found in either English
or Welsh, but it is found in French. While nasalised vowels are more restricted
in French, it is a prevalent phonetic feature that they share that most other
languages do not have.

Traditionally Breton tended to stress the penultimate syllable. This is some-
thing that it shares with Welsh which is also stressed on the penultimate syl-
lable. Despite this, there is evidence that the stress patterns have started to
shift, especially in younger speakers (Kennard, 2021). These new stress pat-
terns are influenced by French. This is yet another way in which French has
been influencing the phonology of Breton over the centuries.

2.2.2 Phonology of Welsh
Welsh has a more limited phonemic inventory when compared to Breton. The
number of consonants is comparable with Welsh having 29 consonants Cooper
et al. (2019). According to Cooper et al. (2019), Welsh has up to 13 monoph-
thongs and 13 diphthongs. Dialects of Welsh vary substantially between North
and South Welsh. Despite this phonetically this only manifests itself in the
vowel inventories of the different dialects with the consonant inventory being
consistent across the different dialects.

2.3 Transfer learning in general
Transfer learning is a technique used in machine learning contexts to transfer
knowledge gained from training one model to a different model where the input
data or learning tasks differ. In the context of natural language processing, this
could be using a model trained for one language to help train a model for a
different language.

Very specifically, it is the process of taking knowledge gained from a source
domain Ds learning task Ts and using that to improve the learning processes
for another target domain Dt and Tt (Pan and Yang, 2009; Ruder, 2019).

Transfer learning is useful in many contexts, and has been used to create
state-of-the-art results in different domains. For natural language processing,
it has been used successfully by many people (Salimzianov, 2021; Tyers and
Meyer, 2021; Bansal et al., 2018) to create effective models for lower-resourced
languages by exploiting available data and models from languages with more
available data such as English.

Pan and Yang (2009) differentiate between three types of transfer learning;
transductive, unsupervised, and inductive transfer learning. The difference lies
in the relationship between the source and target domains and learning tasks.
When the source domain and target domains are the same Ds = Dt, but the
learning tasks differ Ts ̸= Tt, this is called inductive transfer learning. When
the source domain and target domain differ Ds ̸= Dt, but the learning tasks are



the same Ts = Tt, this is called transductive transfer learning. Unsupervised
transfer learning is when both the source and target domain and learning tasks
differ Ds ̸= Dt and Ts ̸= Tt.

In the context of natural language processing, the different domains and
learning tasks are often different languages, and the difference often lies in
whether you have labelled data for the target domain Dt (i.e the language that
you are transferring the knowledge to). Ruder (2019) makes some further dis-
tinctions between some subcategories of the types of transfer learning described
by Pan and Yang (2009).

If we only have labelled for the source domain Ds (i.e the language we are
transferring knowledge from), this would fall under transductive transfer learn-
ing since the source and target domains are not the same Ds ̸= Dt. Since the
learning tasks are targeting different languages this is a type of transfer learning
called cross-lingual learning. If we have labelled data for the target domain Dt,
this would fall under inductive transfer learning. If the transfer learning hap-
pens in sequence, then this type of transfer learning is called sequential transfer
learning.

This is a helpful distinction that Ruder (2019) makes, and makes it easier to
distinguish between different types of transfer learning used in natural language
processing. Many forms of transfer learning used in natural language processing,
especially in speech-to-text, use a model that is trained on the source language
Ds to achieve its to perform its learning task Ts. This model is then used as a
basis to train a model for a different domain Dt to perform the same task. For
example, for speech-to-text and English STT model can be trained and used as
a basis for a Welsh model. This is an example of sequential transfer learning
and is a common method of transfer learning for STT tasks.

2.4 Lower-resourced languages and transfer learn-
ing

A lower-resourced language is generally defined as a language that has a lack
of or limited availability of elements like a fixed orthography, presence in the
digital space, and digital resources (Besacier et al., 2014). Digital resources such
as online dictionaries, pronunciation dictionaries, corpora (both written and
spoken), and so forth are vital to building digital tools and services for languages.
Lower-resourced languages often lack many of these resources, which makes
creating tools and services and enabling the language to thrive in the modern
world difficult. According to Besacier et al. (2014) there are more than 6900
languages in the world and only a small number of these have sufficient resources
available. Both Breton and Welsh are considered lower-resourced languages.

While lower-resourced languages do not have to be endangered or minor-
ity languages, the reverse is often true meaning that minority and endangered
languages tend to be lower-resourced Besacier et al. (2014). This creates a sig-
nificant imbalance where languages that are more well-off are able to thrive and



be more used in the digital world leading to more available data, while languages
that are endangered and need these resources are falling behind. This imbal-
ance is further manifested in the fact that teams working with lower-resourced
languages tend to be smaller and have fewer resources like GPUs available to
work with.

This is where modern machine-learning techniques such as transfer learning
become extremely important. By utilising available data from more well-off
languages, effective models can be created for lower-resourced languages. In re-
lation to speech-to-text, collecting speech data is often a tedious and expensive
process, but by utilising data available for languages such as English we are
able to create effective models using a significantly lower amount of data. With
the advent of open-source corpora and resources such as Common Voice (Ardila
et al., 2019), data and tools for minority languages have become democratised,
which has enabled more data to be made available. Both of these elements
together have had the effect of lowering the barrier of entry to technologies
and have enabled technologies like speech-to-text to be developed for these lan-
guages. These technologies, tools are services are vital to the digital presence of
minority languages, and by enabling these technologies more minority languages
are able to thrive in the modern world.

2.5 Transfer learning in relation to STT
Transfer learning has been used successfully in the past to create models for
lower-resourced languages. Both Salimzianov (2021) and Tyers and Meyer
(2021) showed that effective results can be achieved utilising transfer learning
in speech-to-text models range of languages. Even though the resulting models
are not as effective as state-of-the-art, they are still better than what could
be achieved without the usage of transfer learning and they provide a valuable
stepping stone in the process of enabling better models for these lower-resourced
languages.

Tyers and Meyer (2021) also showed that careful selection of parameters is
important to achieving good results and that just fine-tuning the parameters
can result in a 5% to 15% decrease in character error rates (CERs). The same
trend has been shown in other research as well. This highlights the importance
of the parameters for each language and shows that consideration will have to be
taken to ensure that the parameters are optimised for the language in question.

Transfer learning has also been used in other natural language processing
domains as well, such as speech-to-text translation, to great effect. Research
conducted by Bansal et al. (2018) seems to indicate that the more training
data the better, even using data that are unrelated to the target languages.
Their Mboshi-to-French model performed better when using a model that was
pre-trained in both English and French. Their approach using the French-only
pre-trained model performed better than their English-only one despite having
a significantly lower amount of data. This seems to indicate that the language
combination has some effect on the results. Despite this, this has not been



properly explored for standalone speech-to-text models using transfer learning.
Tyers and Meyer (2021) used the same pre-trained English model for all of
their experiments and Salimzianov (2021) also used a single pre-trained English
model.

The decision to use English as a base to build models is understandable,
but it highlights an inherent bias towards using specific languages as a base
without taking into account the suitability of that language in the context in
which it is used. Rahimi et al. (2019) showed that the base language can have a
considerable impact on the quality and performance of models when using direct
transfer. This has not been explored in depth in relation to transfer learning
for speech-to-text is the choice of language to use as a base, and it raises the
question of whether the results that Tyers and Meyer (2021) and Salimzianov
(2021) obtained can be improved by utilising a different set of source languages.

2.6 Common Voice
Common Voice is an open-source and crowd-sourced project that contains speech
corpora for a wide range of different languages (Ardila et al., 2019). Due to the
crowd-sourced nature of the project, the audio is not of high enough quality for
certain speech-related tasks such as text-to-speech. However, Common Voice is
a valuable resource for training speech-related technologies such as speech-to-
text.

For languages such as English, Spanish, Catalan, French, and others, there
are enough data to train speech-to-text models from scratch. However, lan-
guages like Breton and Irish only have nine and four hours of audio respectively.
While this is a substantial amount of data, it likely is not enough to train an
effective model from scratch. However, by utilising transfer learning, it might
be possible to make some useful models for these languages despite them being
under-resourced. Breton was one of the languages that Tyers and Meyer (2021)
tested their system on and they did get good results, but not as good as many
of the other languages they tested.

2.7 Coqui STT
Coqui STT is an end-to-end speech-to-text framework developed by Coqui AI.
It is an independent continuation of Mozilla’s Deep Speech framework. Deep
Speech is based on a recurrent neural network (RNN) which is trained to ingest
spectrogram data (Hannun et al., 2014). This RNN is built using Tensorflow
(Abadi et al., 2016). Coqui uses a modified version of this architecture1. Since
Coqui is an end-to-end speech-to-text framework, it is trained on transcribed
text rather than phonemes. This also means that it does not require a pronunci-
ation dictionary or Grapheme-to-Phoneme (G2P) model and it makes the Coqui

1Information about the architecture of Coqui can be found at https://github.com/
coqui-ai/STT/blob/main/doc/Architecture.rst

https://github.com/coqui-ai/STT/blob/main/doc/Architecture.rst
https://github.com/coqui-ai/STT/blob/main/doc/Architecture.rst


framework language independent. This stands in contrast to earlier systems like
Kaldi (Povey et al., 2011) and HTK (Young et al., 2002).

Coqui STT has some benefits over other similar systems like wav2vec (Baevski
et al., 2020) in that it supports streaming, i.e transcription of audio on-the-fly
as opposed to requiring a complete audio file. This usually results in worse over-
all performance for the models. As mentioned by Salimzianov (2021), it also
has far less demand for computing. Other than that, it also supports transfer
learning and support for additional language models to be inserted. This means
that it is possible to pre-train base models using Coqui, and then use these as
a foundation for other models.

As mentioned earlier, Coqui STT was used by both Salimzianov (2021) and
Tyers and Meyer (2021) to great effect. There are however some questions that
they left open. They only used one English model for all of their experiments
and did not use any other base language or any combination of languages like
Bansal et al. (2018). This leaves the question: Do the base model and the
language of the base model have an impact on the performance of the model or
is any measurable difference simply down to the amount of training data? And
if it does impact the overall performance, how significant is it?

If we look at languages that are closely related, like Breton and Welsh, there
are still characteristics that differ between the languages. For example, the
realisation of the letter “r” is often in the French-inspired standard version of
Breton realised as /ʁ/. Welsh on the other hand does not use this sound, and
neither does English. French on the other hand does use this sound. There is
a likelihood that the model could learn to recognise this sound from the French
dataset, and therefore any model that has been trained on the French base
model would be better at recognising this sound than if it was trained on the
English base model that had not come across the sound before.

This boils down to a question about quality versus quantity. Do the type of
data and the phonology of the language of the base model affect the performance
of the model? This is something that has not been investigated by the existing
research and is something that could play a role in determining how to maximise
the benefits gained from transfer learning. This leaves an opening in the existing
literature and is something that this project seeks to investigate further.

2.8 Summary and Discussion
We have discussed the issues facing lower-resourced languages and why tech-
nologies such as transfer learning can play a crucial role in enabling digital
tools and services to be developed for these languages by exploiting available
resources from other languages. Newer speech-to-text frameworks like Coqui
have in-built functionality to do transfer learning, making it possible to create
effective models for these languages without a vast amount of data.

It is also clear that there are some unanswered questions in the existing lit-
erature in regard to how to maximise the effectiveness of transfer learning in
a speech-to-text context. A methodology has been proposed that will enable



the dissertation to attempt to answer some of these questions. This will hope-
fully enable more effective models to be trained, meaning that lower-resourced
languages have the opportunity to thrive in a digital world and enable better
accessibility services to be developed.



Chapter 3

Research Question,
Hypotheses, and
Methodology

This chapter will lay out the main research questions that this dissertation will
attempt to investigate. In addition, a set of hypotheses will be formalised so that
these can be evaluated during the analysis. The chapter will also go into more
detail about the methodology that the dissertation will use to try to answer the
research question. Finally, the chapter will discuss what metrics are available
to be used to evaluate the performance of the acoustic models, how they are
defined, and which ones will be used for this dissertation.

3.1 Research questions and hypotheses
Based on the review of existing literature, it is clear that there are some ques-
tions in relation to transfer learning and speech-to-text that are not sufficiently
answered by this existing literature, such as what impact the choice of base lan-
guage has on the effectiveness of the transfer learning. As we have seen, there
are examples in other domains where it has been shown to have a substantial ef-
fect. Therefore, the main hypothesis of this dissertation is to investigate whether
the choice of base language does in any way impact the overall performance of
models.

Hypothesis 1: The choice of base language does impact the overall perfor-
mance of the models.

If this hypothesis holds true, we would expect models that are trained using
languages that have a high degree of “compatibleness” to perform better than
models that are trained using languages that have a lower degree of “compati-
bleness”. What “compatibleness” means is very abstract, but this dissertation
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will attempt to quantify this relationship and use these quantitative metrics to
evaluate the merit of the hypothesis.

Based on this hypothesis, its corresponding null hypothesis can be defined
as such:

Hypothesis 0: The choice of base language does not impact the overall perfor-
mance of the models.

It might very well be that the dissertation will show that there is no merit
to the hypothesis and that other metrics such as the amount of training data
are of much greater importance. This dissertation will also attempt to take into
account these other metrics and attempt to figure out whether this is the case.

3.2 Methodology
To investigate the basis of the hypothesis that the base-model language can
impact the quality of the final model, an analysis of the distribution of phonemes
and the phoneme inventory of the different languages and how these compare
to the other languages will be carried out.

In total six models will be trained based on three base models. One English,
one French, and one French model will be created using transfer learning from
English. An English model already exists and is available from Coqui’s repos-
itory. As such, there is no reason to train a new one from scratch. However,
the two French models will have to be trained. Then one Welsh and one Breton
model will be trained based on all of the three base models. This means that
we’ll have six data points for our evaluation.

The data for this training will be taken from the Common Voice speech
corpus. This data has to be cleaned and pre-processed before it can be utilised
by Coqui STT as training data for our models. There is a substantial amount
of data available for both English and French, with 2,224 hours of validated
speech data for English and 848 hours for French. Welsh has substantially less
with 117 hours available. Breton however, only has 9 hours of validated data
(Ardila et al., 2019).

The parameters that are chosen for the training of these models are impor-
tant. Carefully selecting the parameters could improve the overall performance
of the speech-to-text models with between 5 to 15% (Tyers and Meyer, 2021).
Therefore some preliminary testing needs to take place in an attempt to op-
timise these parameters. The project will aim to make smaller models using
a subset of the training data, and then evaluate the validation loss curves to
determine the parameters that are likely to yield the best results.

Using these parameters, full models will be trained using the full available
dataset. Given the amount of data, this training is likely to take some time.

In addition to this, an analysis will be conducted of the data, which will
aim to extract several metrics about the dataset. This includes the overlap
of phonemes between two languages, the Euclidean distance between the rela-
tive frequencies of phonemes between two languages, the number of phonemes



missing and so forth. The aim of this is to see whether there is a correlation be-
tween the character error rates of the final models and the interaction between
the base language and the target language. The main metric that will be used
is Pearson’s correlation coefficient (r) (Pearson, 1895).

3.2.1 Performance metrics for acoustic models
There are two common ways of measuring the performance of speech-to-text
models. That is the word-error-rate (WER) and character-error-rate (CER).
Both use the Levenshtein distance (Levenshtein et al., 1966) as a way of mea-
suring the distance between the output of the speech-to-text model and the
ground truth. The Levenshtein distance is defined as the minimum amount of
operations such as additions, substitutions, and removals that have to occur to
transform one string into another. While there are many ways of implementing
the Levenshtein distance algorithm, a recursive implementation that computes
the distance between string a and b can be seen in equation 3.1:

lev(a, b) =



|a| if |b| = 0,

|b| if |a| = 0,

lev
(

tail(a), tail(b)
)

if a[0] = b[0]

1 + min


lev

(
tail(a), b

)
lev

(
a, tail(b)

)
lev

(
tail(a), tail(b)

) otherwise.

(3.1)

There are a couple of things to note about this implementation. The recur-
sive implementation of the Levenshtein distance as seen in 3.1 will make the
same recursive call multiple times. Most implementations will store intermedi-
ate results to mitigate that issue. Strings are also zero-indexed as they would
be in computer implementations. The tail function as seen in equation 3.1 is
defined as in equation 3.2:

tail(a) =
{
∅ if |a| = 0

a[1, |a|] otherwise.
(3.2)

The difference between the word error rate and the character error rate
is whether they count the number of words that need to be corrected or the
number of characters. The Levenshtein distance is in both cases divided by the
length of the ground truth so that the metric becomes independent of the length
of the string. The definition of the character error rate (CER) metric can be
seen in equation 3.3. The definition of the word error rate is exactly the same
as the character error rate, but instead of calculating the Levenshtein distance
using the characters of the strings, the words of the strings are used. Since any
misspellings will cause the entire word to be classified as wrong, the word error
rate tends to be higher than the character error rate.



CER(target, output) =
lev(target, output)

|target|
(3.3)

When measuring the performance of only an acoustic model, the most useful
metric is the character error rate. Since no language model is being used,
misspellings are not being corrected. This means that the word error rate is
very closely correlated with the character-error rate and it simply measures
the rate at which a word has no misspellings. The lower the character error
rate the higher the chance that a word will be properly spelt. As such, using
the character error rate itself gives in this case a more accurate picture of the
acoustic models’ ability to detect and correctly classify the sounds.

The character error rate is not a perfect way of measuring the performance
of models. Depending on the orthography of the language, there might be a
significant distance between a character and a phoneme. This is especially true
for languages such as English and French which has an orthography that is less
phonetic than languages such as Breton and Welsh.

A phoneme error rate of the models could potentially provide a better way
of quantifying the performance of the models. This is because it more closely
represents the performance of the model in terms of phonology and removes
any effect the orthography of the language might have on the results. For this
project, it could be more helpful to train and evaluate models using phonemes
rather than text. There are some issues with that approach, however. While
systems like Kaldi and HTK use phonemes when transcribing audio, Coqui
does not. Coqui is, as mentioned in section 2.7, an end-to-end speech-to-text
framework meaning it does not rely on pronunciation dictionaries and it outputs
characters as opposed to phonemes. This makes measuring the phoneme-error-
rate could difficult.

Another issue is that there is not enough data to accomplish this. For
example, there is no freely available pronunciation dictionary for Breton, and
very few corpora, if any at all, with phonetic transcriptions exist for languages
such as Breton and Welsh. This makes it incredibly difficult to properly train
and evaluate the models.

Due to all of the aforementioned reasons, it was decided that using the
character error rate as the main metric was the best option.

3.3 Summary and Discussion
In this brief chapter, we have defined the main research questions of the dis-
sertation and formulated some hypotheses based on them. The methodology
describing how the dissertation is going to attempt to answer these questions
was also discussed.

We have also had a look at the different evaluation metrics for acoustic
models and determined that the character error rate is the best metric that can
be reasonably used given the resources that are available for the project. A
formal definition for the character error rate was also defined.



Chapter 4

Preparing and Analysing
the Training Data

This chapter describes the work undertaken before any of the acoustic models
were trained. That mainly includes the preprocessing and analysis of the Com-
mon Voice datasets. There are two reasons why this was carried out. Firstly, to
create efficient models, it is beneficial to know and understand the underlying
data, any issues it might have, or any particularities that need to be accounted
for. Secondly, in order to perform the analysis later, we need to extract some
metrics about certain characteristics of the languages and the training data.
This chapter explains the work that was completed in relation to these two
points and discusses the implications of the findings and the consequences that
these might have on the overall results of this experiment.

4.1 Amount of data in the Common Voice
datasets

Common Voice 10 was released during the project. This release contained new
data for all four languages. The amount of data for Welsh and Breton can
be seen in figure 4.1. The data increase from Common Voice 9 is not very
significant, especially for Breton and Welsh, and the rate of increase seems to
have been slowing down considerably in the past few releases. This is rather
unfortunate and highlights that there is still substantial work to be done to
facilitate and motivate people to contribute to projects such as Common Voice.
This is especially true for minority languages.
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Figure 4.1: The amount of data in the Common Voice dataset for Breton and
Welsh. Note that some of the early data for Breton is missing.

While it is difficult to see in figure 4.1, figure 4.2 makes it more obvious that
this trend is not only true for Welsh but is also affecting Breton.

Figure 4.2: The amount of data in the Common Voice dataset for Breton and
Welsh over time compared to the amount of data in Common Voice 10.



4.2 Unique sentences in the Common Voice datasets
All Common Voice datasets come with a set of predefined splits. This includes
a training set, a testing set, and a validation set (also called a development
set). These datasets only use the validated data, which is data that have been
reviewed and validated by the Common Voice community.

As noted by Jones (2022), Mozilla’s predefined datasets only use a single
sentence across all of its sets. This means that for languages that have a high
rate of duplicated sentences, the amount of usable data diminishes greatly. To
investigate the severity of this problem, a BASH script1 was created to extract
the number and percentage of unique sentences in the validated set. The results
that this script produced can be seen in table 4.1.

Language Total Unique %
Breton 11169 6875 61.55
English 1589009 954095 60.4
French 625587 491052 78.49
Welsh 87295 18004 20.62

Table 4.1: Overview of the number of unique sentences in the validated.tsv file
for each language in Common Voice 10.

As can be seen in table 4.1, the Welsh dataset is unique in having a very
high rate of duplication. This means that the effective dataset is significantly
lowered. To compensate for this, new custom splits will have to be made. By
creating custom splits more of the validated data can be used, and hopefully,
will lead to improved models.

4.3 Analysis of phoneme distribution in the train-
ing data

To investigate the basis of the hypothesis that certain shared characteristics
of base and target languages impact the overall performance of the models,
an analysis of the phoneme distribution in the training data had to be under-
taken. This was achieved by getting a pronunciation dictionary for each of the
languages, converting the sentences into their International Phonetic Alpha-
bet (IPA) (International Phonetic Association et al., 1999) representation, and
then looking at the distribution of IPA symbols and how they differed between
languages.

1The script can be found at https://gitlab.com/prvInSpace/master-dissertation/-/
blob/master/data/common_voice/unique.bash

https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/data/common_voice/unique.bash
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/data/common_voice/unique.bash


4.3.1 Pronunciation Dictionaries
A set of pronunciation dictionaries were required for this experiment. The
reason is that we wanted to analyse the phonemes used within the Common
Voice datasets. In order to perform this analysis, sentences in Common Voice
had to be converted into IPA so that presence of and the number of occurrences
for different phonemes could be documented for each language. Pronunciation
dictionaries were used to convert words into their IPA representation.

There are some drawbacks to this approach. Firstly, many pronunciation
dictionaries might be incomplete. This leads to a loss of information because
we cannot analyse those words. This is especially a problem for languages such
as Breton and Welsh that has initial letter mutations because the radical forms
(i.e the unmutated forms) of the word might be present but sometimes the
mutated forms are missing. In certain circumstances, this could be rectified by
attempting to de-mutate a word and automatically changing the initial letter
sound. One issue, however, is that sometimes this change in sound have a
knock-on effect that affects the realisation of the following sounds.

Another issue is that of homographs. There might be words in different
languages that are spelt the same way but pronounced differently. The simplis-
tic approach taken here will have a hard time distinguishing between the two
homographs and will be forced to choose one over the other. It should be noted
that homographs are not too common. While the results are affected by this
issue, it should not change the results enough to invalidate them.

Finally, not all languages have publicly available digital pronunciation dic-
tionaries. For languages like English and French, there are comprehensive and
publicly available pronunciation dictionaries. The same can not be said for some
of the other languages, especially Breton which had no publicly available pro-
nunciation dictionary. How this issue was overcome will be discussed later in
this section.

Publicly available pronunciation dictionaries used

For Welsh, the Bangor Pronunciation Dictionary (Jones and Cooper, 2021) was
used. This repository also contains a pre-processed copy of the CMU English
Pronunciation Dictionary by Weide et al. (2015). While the CMU Pronuncia-
tion Dictionary uses the ARPAbet format (Barnett, 1975) to transcribe words,
Jones and Cooper (2021) has a version where the ARPAbet entries have been
translated to IPA. Given that it was in the same format as the Welsh pronun-
ciation dictionary, this dictionary was used for English.

Breton Pronunciation Dictionary

There seems to be a lack of freely available pronunciation dictionaries online,
hence, a pronunciation dictionary for Breton had to be created. To achieve this,
a Python script was created to scrape the Breton version of Wiktionary, called
Wikeriadur (Wikeriadur contributors, 2022). While this provided a starting ba-
sis, it was clear that the pronunciation dictionary was not perfect and contained



many mistakes that probably happened as part of the scraping. Therefore the
dictionary had to be checked, cleaned up, fixed, and verified. With the help
of some native Breton speakers, this work was carried out by Vangberg et al.
(2022) and the work was made available online for others to benefit from.

4.3.2 Methodology
A Python program2 was developed to carry out this task. This program has
to achieve a couple of things: extract a list of sentences from Common Voice,
convert these sentences into their IPA equivalent, and then count the occurrences
of the different phonemes in the different languages.

The Common Voice datasets come with a set of tab-separated values (TSV)
files that contain information about all of the audio clips. The sentences for
the different languages could then be extracted from the validated set which
contains a list of all of the audio files that have been validated by the community.
Since there might be several recordings of the same sentences, the list were then
filtered for duplicates so that each sentence only get processed once.

2Can be accessed at https://gitlab.com/prvInSpace/master-dissertation/-/blob/
master/scripts/phoneme_distribution.py

https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/scripts/phoneme_distribution.py
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Figure 4.3: Flowchart of the process of extracting phonetic data from the train-
ing data.

As explained in the previous sections, these sentences had to be converted
into their IPA representation. This conversion is done by tokenizing the text
and then looking up the tokens in the pronunciation dictionary for the language
being processed. These tokens can then be further split so that each phoneme is
separated from the ones around it, but keeping any markers such as prolongation
and similar. When that has been done, it is just a case of counting the number of
occurrences for each phoneme in the dataset. This process allows us to analyse
what phonemes are present and their relative frequencies of phonemes. These
metrics can then be transformed into usable metrics that can be used for our
analysis.

4.3.3 Results
Before we look at the results, let us look at how well the script was able to
convert tokens to IPA and how many phonemes it found for each language. A
summary of this can be seen in table 4.2.



Language % Converted Phonemes
found

Breton 72.77% 68
English 96.36% 38
French 87.73% 82
Welsh 98.39% 43

Table 4.2: Overview of how many phonemes were found and how many tokens
were successfully converted to IPA.

As can be seen in table 4.2, the script was able to successfully convert most
tokens for most languages. French and Breton have a significantly lower con-
version rate than both English and Welsh. For Breton, the main reason for this
is that the pronunciation dictionary does not contain any mutated form of the
different tokens. Therefore, only the radical (unmutated) forms got successfully
converted.

The amount of phonemes extracted for each language is also interesting when
we compare this to the number of phonemes that we expected. According to
Cooper et al. (2019), there are 29 consonants, up to 13 monophthongs, and up
to 13 diphthongs in Welsh. Since the script does not recognise diphthongs, this
would mean that we would expect 42 phonemes in Welsh. That is very close to
the 43 number that we found.

The same is true for Breton. According to Hemon and Everson (2011),
there are 30 consonants and 11 vowels where most of which can be elongated and
nasalised. That would mean that Breton has around 63 phonemes. The number
we got, 68, is slightly higher than this, but this number includes all versions of
“r” found in Breton in addition to sounds that are likely from borrowed words.

English is roughly aligned with expectations as well. According to Yavas
(2020), there are 24 consonants and 12 monophthongs in American English.
This means that we should expect around 36 phonemes. This aligns pretty
well with the results that we have found and the two additional phonemes are
elongated vowels.

The number of phonemes in French is likely inflated. According to Hannahs
(2007), there are 21 consonants and 11 monopthongs in French. Note, that
this does not include elongated forms, the four nasalised vowels, and schwa ə.
If we assume that every vowel can be elongated, that means that there are a
total of 49 different phonemes in French. This is substantially lower than the
82 that our script produced. The reason for this is that the script found a
substantial amount of phonemes that are not present in the list in Hannahs
(2007). For example, it includes all rhotic consonant variations and allophones
of the phonemes in Hannahs (2007). This is likely due to the pronunciation
dictionary containing a much narrower transcription of the words than some of
the other dictionaries.

How this will impact the results is hard to determine. The number of
phonemes for the other languages is mostly aligned with expectations. For



this project, it was determined to stick with the results returned by the script
on the grounds that if the sounds are in the datasets then they should be in-
cluded. Any future research should take this into account, however, and should
probably aim to normalise the transcriptions so that the different languages are
transcribed approximately with the same broadness.

An overview of all of the relative frequencies of the phonemes can be seen
in figure 4.4 and 4.5. As expected, the most commonly shared phonemes have
quite similar relative frequencies. Since many unstressed vowels in English get
turned into schwa ə, it is not surprising that this phoneme is very common in
English.

However, this data is not very useful on its own, but there are some metrics
that can be extracted from it that we can use for our analysis. This is what we
will discuss next.



Figure 4.4: Overview of the relative frequency of phonemes in the different
languages (part 1).



Figure 4.5: Overview of the relative frequency of phonemes in the different
languages (part 2).



4.3.4 Extracting metrics for analysing the hypothesis
There are several metrics that were extracted from this data. These metrics were
then used to see if there was any correlation between them and the character
error rates of the models. The three metrics that were considered of interest
were: the percentage of phonemes in the target language that is also present
in the base language; the Euclidean distance between the relative frequencies
of phonemes between the two languages; and the number of phonemes in the
target language not present in the base language.

Phonemes in the target language also present in the base language

One of the core ideas of hypothesis 1 (see section 3.1) is that when training a
language based on a language that has a low overlap in phonemes, this means
several new unseen patterns would have to be learnt during training. One way of
quantifying this is to look at the percentage of phonemes in the target language
that is also present in the base language. This can be shortened to just the
phoneme overlap between the two languages.

If B is defined as the set of phonemes in the base language and T is defined
as the set of phonemes in the target language, the phoneme overlap (PO for
short) between the two languages can be calculated as in equation 4.1:

PO(B, T ) =
|B|

|B ∪ T |
. (4.1)

If hypothesis 1 is true, we should expect a negative correlation between the
overlap of phonemes between the two languages and the character error rate,
meaning the higher the overlap, the lower the character error rate.

Phonemes in the target language that are not present in the base
language

As mentioned in the previous section, the difference between the phoneme in-
ventory of the target language and base language is very much at the core of
hypothesis 1. Another way to quantify this difference other than the phoneme
overlap is the absolute number of phonemes in the target language that is not
present in the base language. As with the phoneme overlap, if B is defined as
the set of phonemes in the base language and T is defined as the set of phonemes
in the target language, a number of phonemes that needs to be learned (PNP
(Phonemes Not Present) for short) can be calculated as seen in equation 4.2:

PNP(B, T ) = |B − T |. (4.2)

If hypothesis 1 is true, then these would be phonemes that the model would
have to learn the patterns of during training. We should expect a positive
correlation between this metric and the character error rates of the models,
meaning the more phonemes have to be learned the higher the character error
rate.



Euclidean Distance

One interesting aspect when comparing two different languages is how often a
phoneme occurs in one language compared to another. If hypothesis 1 is true,
it could be reasoned that if a sound is only rarely seen in one language but very
frequently in another this might affect the quality of the finished model. In
order to compare the relative frequencies of phonemes between two languages,
the Euclidean distance was utilised.

Since the experiment above returned the absolute number of occurrences, it
is possible to calculate the relative frequency of each phoneme in the language
by dividing the number of occurrences n by the total amount of occurrences N
as shown in equation 4.3:

fi =
ni

N
. (4.3)

To calculate the Euclidean distance between the two languages a list of
all phonemes present in either language is required. If B[p→f ] represents the
dictionary of phonemes in the base language and their associated relative fre-
quencies in the base language and T[p→f ] represents the dictionary of phonemes
in the target language and their associated relative frequencies, the list of all
phonemes in either language P can be derived by taking the union of the two
sets of phonemes. This operation can be seen in equation 4.4:

P = Bp ∪ Tp. (4.4)
The original dictionaries have to be modified slightly as there is now the

possibility that there are phonemes in P that are not present in the original
dictionaries. This can be resolved by inserting 0 where required as shown in
equation 4.5:

For p ∈ P : X(p) =

{
X(p) if p ∈ X

0 if p /∈ X.
(4.5)

When that has been done, the lists should be of equal length and the Eu-
clidean distance then be calculated as shown in equation 4.6. This is based on
the higher-order Euclidean distance formula as formulated by Tabak (2014):

d(B, T ) =

√∑
p∈P

(B(p)− T (p))2. (4.6)

The Euclidean distance will then return a number where 0 represents a
perfect match and the higher the number, the larger the difference between the
two lists.

This was implemented in Python3 using sets to get a list of all phonemes in
either of the two languages as explained in equation 4.4. List comprehensions

3For implementation, see the function “calculate_euclidean_distance” in the file
located at https://gitlab.com/prvInSpce/master-dissertation/-/blob/master/scripts/
phoneme_distribution.py

https://gitlab.com/prvInSpce/master-dissertation/-/blob/master/scripts/phoneme_distribution.py
https://gitlab.com/prvInSpce/master-dissertation/-/blob/master/scripts/phoneme_distribution.py


were then used to add any missing data as outlined in equation 4.5. Then the
NumPy library (Harris et al., 2020) was used to calculate the Euclidean between
these two lists because it contains in-built functions for doing this.

4.3.5 Overview of extracted metrics
All of the metrics discussed in section 4.3.4 were gathered for each possible
model pair. The full overview of metrics can be seen in table 4.3.

The columns in table 4.3 are explained as follows. The target language is the
language that we are trying to train a model for. ISO 639-1 two-letter codes are
used to represent each language. “br” is used to represent Breton, “cy” means
Welsh, “en” means English, and “fr” means French (International Organization
for Standardization, 2002). The base column shows the language of the base
model and follows the same naming convention as the target column. The % of
phon. in base column shows the % of phonemes present in the target language
also present in the base language. The Distance column shows the Euclidean
distance between the target and base language. The final column shows the
absolute number of phonemes in the target language not present in the base
language.

Target Base % of phon. Distance Missing
in base phon.

br cy 39.71 0.180 41
br en 39.71 0.211 41
br fr 75.00 0.168 17
cy br 69.23 0.180 12
cy en 74.36 0.149 10
cy fr 79.49 0.212 8
en br 87.10 0.211 4
en cy 93.55 0.149 2
en fr 96.77 0.239 1
fr br 68.92 0.168 23
fr cy 41.89 0.212 43
fr en 40.54 0.239 44

Table 4.3: Overview of the metrics extracted for each model pair

Some interesting observations can be made when looking at this data. As ex-
pected, we can see that Breton has both a significantly higher phoneme overlap
as well as a lower Euclidean distance between it and French than for any other
language. This seems to underpin the idea that French and Breton have signifi-
cantly influenced each other over the last millennium. Interestingly enough, the
language that is the second closest to Breton in terms of Euclidean distance is
Welsh. Given that these two languages are closely related this might not be a
surprise, but it is interesting to see it manifested in the results.



In terms of Welsh, the results are more ambiguous. While English has the
lowest Euclidean distance to Welsh, it is French that has the highest phoneme
overlap. This might seem surprising, but there are some ways of explaining
this. If we look at the total amount of phonemes present in each language, we
can see that French and Breton have significantly more phonemes than both
English and Welsh. Due to this, the likelihood of French containing any of the
phonemes in Welsh is quite high, though some are not present.

If we are looking at these results and comparing them to hypothesis 1 that
certain aspects of the base language have an impact on the final model, there
are some predictions that we can make. If hypothesis 1 is true, based on the
phoneme overlap, Euclidean distance, and the number of missing phonemes, we
would expect that for Breton there will be a benefit in training the model using a
French base model. For Welsh, on the other hand, it is a bit more ambiguous. If
the most important metric is the number of unseen phonemes, we would expect
it to be beneficial for the Welsh models to be trained on a French base model.
However, if it is the Euclidean distance that is the most important metric, we
would expect English to be the best language to use as a base. All of that being
said, since the differences between English and French are so low, especially in
terms of unseen phonemes, it might very well be that any benefit is negligible
or none at all.

4.4 Summary and discussion
In this section, we explained the work that was undertaken to analyse and pre-
process the Common Voice datasets before the training of the models. Most
importantly, we devised a method to extract phonemic information about the
dataset for the different languages and defined set metrics that would be used in
our analysis. It is interesting to see how close these metrics were to expectations
and especially how close the number of phonemes was to what existing literature
suggested it would be.

Despite this, there are some caveats. Firstly, French seems to have been
narrowly transcribed to a greater extent than the other languages. This might
impact the robustness of any findings that the analysis produces. It is clear
what this negatively impacts the results and it is also clear that for metrics like
the Euclidean distance, it should not affect it at all.

It was also discovered, in line with other contemporary research, that the
predefined data splits in the Common Voice datasets provide a low utilisation of
the available data. This is especially true for Welsh. Therefore, we can conclude
that it will be beneficial to create custom splits that have higher utilisation of
the available data. These custom splits might also benefit the models on the
whole leading to better models.



Chapter 5

Training and Evaluating the
new Models

This chapter will explain the work that was undertaken to create a language-
independent training environment and the steps that were taken to train all of
the models. It then describes any issues that were encountered and how these
were overcome. The chapter also goes into detail about what the research that
was carried out in relation to the dataset splits, and the effect of the different
methods. Finally, the chapter will explain how the performance was analysed
and how these results compare to the state-of-the-art.

As described in section 3.2, a total of eight models were trained of which
six made up the data points for the evaluation. For each one of the three base
models, a Welsh model and a Breton model were created.

5.1 Creating the training environment
As described in the methodology section (see section 3.2), Coqui STT was used
to create the acoustic models for this experiment. Specifically, the Docker image
for Coqui STT version 1.3.0 was used. Docker (Merkel, 2014) is a tool that allows
you to create predefined images or environments and run several instances of
that image. These instances are called containers as they function as contained
units completely separate from each other. This allows code to run in a protected
environment and makes it easier to ensure that dependencies are set up properly
allowing for easier to run the application across several platforms. In addition
to this, a set of scripts were created and added to the Docker image so that they
could be used inside the training container.

5.1.1 Folder structure within the container
In an effort to maximise the reusability of the code, the folder structure within
the Docker container was designed to be as language-independent as possible.
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This means that the base language and target language can be specified at
runtime and utilise the same Docker image.

There are three folders that are present on every Docker image. /data,
/base, and /export. The /data folder contains the data for the target language
such as training files. For the purposes of this experiment, /data refers to the
Common Voice directory for the target language. The /base folder contains
the base model that is used for transfer learning. This is a folder containing
pre-trained checkpoints for another language such as French or English. Finally,
the /export folder is where all of the output files go. For during the training
process this will be the intermediate checkpoints, but also the exported models
and logs.

These folders are linked as Docker volumes on runtime as can be seen in code
snippet 5.1. This code enables a Docker container to access files outside of the
container as if it was inside the container itself. It also starts a container that can
then be used to train a Coqui model. From the view of the container, the /data
and /base folders are simply folders containing data, but from the outside, we
can manipulate which data sources we use. This means that the Docker image
is language-independent and can be reused for all of the experiments.

Snippet 5.1: Makefile

1 train: .DOCKER_IMAGE
2 nvidia-docker run $(DOCKER_PARAMS) \
3 -v ${PWD}/cv/$(LANG)/:/data/ \
4 -v ${PWD}/base/$(BASE)/:/base/ \
5 -v ${PWD}/models/$(LANG)/$(BASE):/export/ \
6 --name=${USER}-stt-train-$(BASE)-$(LANG) $(IMAGE_NAME)

5.1.2 Training the models
Coqui’s main training module is called coqui_stt_training.train. This is
a Python script that takes a series of parameters that impact the training in
different ways. In this section, we will discuss the most important ones, their
impact, and what values were used. The call to coqui_stt_training.train
can be seen in snippet 5.2 and the line number in the snippet is provided in
parentheses after the parameters where applicable.

As mentioned in section 2.7, Coqui supports transfer learning.
This is achieved by specifying a checkpoint to load from using the
--load_checkpoint_dir flag (line 8) and specifying the number of source lay-
ers to drop using the --drop_source_layers flag (line 11). Using the internal
folder structure as outlined in section 5.1.1, the model for the base language
will always be located in the /base folder. Hence, --load_checkpoint_dir
was always be set to /base. To avoid overriding the existing base model, the
checkpoints were saved to /export/checkpoints. This was specified using the
save_checkpoint_dir parameter (line 9). The --drop_source_layers flag is
used to specify how many of the layers in the base model to drop. For this ex-



periment, it was decided to drop two layers as this seemed to produce effective
models. Something to improve upon in the future would be to further investi-
gate the effect of dropping different amounts of layers so that this feature can
be utilised as effectively as possible.

Both a training set and a development set were used for each of the models.
These are specified using the --train_files (line 4) and --dev_file (line 3)
flags respectively. The development set was used to ensure that the models did
not overfit against the training data. This will hopefully have ensured that the
models are more general-purpose and should be more adaptable to new data.

Another flag that was used during training was --reduce_lr_on_plateau
(line 13). This flag is used to reduce the learning rate when the training script
detects that the training has plateaued. It is likely that this flag this not impact
the overall results or improve the models in any measurable way. The reason
for this is that in most cases, the model was still improving when the results for
the development set started getting worse, meaning that training was stopped
before the training had the chance to plateau.

Snippet 5.2: train.bash

1 python3 -m coqui_stt_training.train \
2 --load_cudnn true \
3 --dev_file /data/clips/prv_dev.csv \
4 --train_files /data/clips/prv_train.csv \
5 --train_batch_size 64 \
6 --dev_batch_size 64 \
7 --alphabet_config_path /data/alphabet.txt \
8 --load_checkpoint_dir /base/ \
9 --save_checkpoint_dir /export/checkpoints \

10 --use_allow_growth true \
11 --drop_source_layers 2 \
12 --max_to_keep 2 \
13 --reduce_lr_on_plateau true \
14 --epochs 150

A BASH script was created to make it easier to call the Python script and
to clear out the /export folder. This script was called train.bash1 and a code
snippet showing the the call to coqui_stt_training.train can be seen in
snippet 5.2. In addition to the previously mentioned parameters, a couple of
extra parameters were provided. The first one is --load-cudnn (line 2). This
flag is required for Coqui to be able to load the English model. The second one is
--use_allow_growth (line 10). This flag allows Tensorflow to grow the amount
of memory it is using. The third one is --max_to_keep (line 12). This parameter
allows the user to specify how many checkpoints to store. This was set to 2.
Finally, a batch size of 64 was used for both the test set and the development
set using the --train_batch_size (line 5) (line and --dev_batch-size (line

1The full file can be found at https://gitlab.com/prvInSpace/master-dissertation/-/
blob/master/train/scripts/train.bash

https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/train.bash
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/train.bash


6). This allows the model to process 64 files at a time instead of only 1. This
speeds up the processing time.

5.1.3 Extracting loss values from the training environment
In order to create graphs documenting the loss values during the training, a
small AWK program2 (Aho et al., 1979) was devised to extract the loss values
for the validation stage for each epoch. While training the model, Coqui prints
updates to the terminal. By processing this text we can extract the loss values
that are printed. While other methods were possible, like wrapping the Python
training program or modifying the Coqui source code, given that Docker has a
feature to access the logs of any given container, it was easier to just take these
logs and filter out the wanted values using AWK.

The way this was done was quite straightforward, but there were a couple
of issues that had to be resolved. Firstly, the output uses carriage returns to
override the previous output. Therefore, the final loss value is at the end of
some very long lines as opposed to being at the same position on every line.
However, it was possible to simply loop over every element of the line and check
whether it matches the format of a loss value and store if it does.

The other problem is that before starting the actual training process Coqui
runs a dummy training process to ensure that it has the required memory and
GPU capacity to run the actual training. The format of this is the same as
any other epoch, and these values had to be filtered out. This was achieved by
setting a flag once the dummy process was finished and only printing values if
that flag was set.

5.2 Creating the dataset splits
As noted in section 4.2, the Common Voice dataset had a low rate of unique
sentences. Since Common Voice’s predefined splits only use one recording for
each individual sentence, that results in the predefined splits having a very poor
utilisation of the available data. Due to this, it was decided that it would be
beneficial to create custom training, testing, and validation splits.

There is one issue to consider when splitting the data, and that is the issue
of testing on seen data. However, in the context of speech corpora like Common
Voice, what is “seen data”? This depends on whether we define utterances or
sentences as unique data points, and whether training and testing on different
utterances of the same sentence are considered testing on seen data.

To test whether splitting on an utterance level gave the models an unfair
advantage, it was decided to test this by training both a Breton and a Welsh
model using both methods.

2The AWK script can be found at https://gitlab.com/prvInSpace/
master-dissertation/-/blob/master/train/scripts/extract.awk

https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/extract.awk
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/extract.awk


Two Python scripts were developed to split the data: one that simply splits
the validated data3 and one that splits it so that one sentence only appears in
one of the splits4. The results from this test can be seen in table 5.1.

Model Sentence Utterance
WER CER WER CER

EN-BR 80.71% 29.37% 83.15% 31.73%
EN-CY 65.11% 19.39% 65.69% 19.70%

Table 5.1: Summary of the models’ performance depending on whether the
datasets were split based on utterances or sentences.

Based on the results in table 5.1, it can be concluded that it does not make
a significant difference whether the dataset is split based on utterances or sen-
tences, at least for Welsh. The differences between results for the two approaches
are minimal as to be within a margin of error. There is a marginal improvement
for Breton, however, in the opposite direction of what was expected. This is
probably due to the Breton dataset being small which makes it more suscepti-
ble to “lucky splits”. Since the worry was that the dataset containing the same
sentences could give the models an unfair advantage, this result can simply be
discarded.

Despite these results, the rest of the models will be trained using the data
splits created by ensuring that each sentence is only present in one data split.
The reason for this is to be on the safe side and to ensure that the models are
not benefiting from testing on seen data. This is despite these results showing
that there is no tangible benefit from training on unique utterances.

5.3 Training the models
This section describes the work that was undertaken to train the two base models
and the six target models. It also describes the choices that went into selecting
and optimising the hyperparameters.

5.3.1 Selection of an English base model
An English model for Coqui already exists and is released alongside every Coqui
release. Since a workable English model already exists, it was decided that it
was unnecessary to create another English model from scratch and that this
model could be used instead. Since Coqui 1.3.0 was used and was the latest

3The Python script for splitting the dataset based on utterances can be found
at https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/
split_utterances.py

4The Python script for splitting the dataset based on sentences can be found
at https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/
split_sentences.py

https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/split_utterances.py
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/split_utterances.py
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/split_sentences.py
https://gitlab.com/prvInSpace/master-dissertation/-/blob/master/train/scripts/split_sentences.py


release available at the time, the English model that was released for version
1.3.0 was used5.

Testing the English model

No data was available for the character error rate of only the acoustic model
without a language model. Since this data is required for some of the compar-
isons and the analysis later, the model had to be manually tested. The problem
is that because of the size of the English model, it was unfeasible to test it
the same way that the other models were tested. However, by exporting the
English model to a Tensorflow Lite file (tflite), it was possible to load the model
successfully and test it using Coqui’s evaluate_exported.py script. The only
issue with this approach is that this script does not print a loss value, hence
for the results this field will be empty. Given that the loss does not really tell
us that much about the performance of the model, this does not particularly
matter.

The test set used for testing the model was the predefined test set in the
English Common Voice dataset. There are a couple of things that are worth
noting. Firstly, the dataset is massive compared to its counterparts. Given the
number of sentences already available in the test set, there was not really a
reason to create custom splits for this dataset.

The dataset also had some clear instances of vandalism where certain record-
ings contained computer-generated speech that said something different than
the transition. It is uncertain to what extent this is a problem and how many of
the test files were affected by this, but it likely negatively impacted the results
of the tests. That being said, it does not seem to be a big enough problem to
invalidate the results, but it is definitely something to be aware of.

5.3.2 Training the French models
There are several French Coqui models available with good character error rates
(CER). Examples of these are the model by Commonvoice-FR contributors
(2022) that has a CER of approximately 15% and the model by Bermuth et al.
(2021) that has a CER of approximately 9%. However, many of these use a
combination of several large corpora. To ensure that most of the models were
trained and tested using the Common Voice dataset, it was decided to train two
French models from scratch: one from scratch and one using transfer learning
using Coqui’s English model.

The model that used the English base model as a base trained successfully
without any issues. The same could not be said for the French standalone model.
Several attempts were made in an effort to get it to train properly. The original
attempt which can be seen in figure 5.1 was clearly not optimal. When training
a model, it is expected that the loss will fall quickly in the beginning as the
model is learning rapidly, then it slows down as the training slows down, and

5The English model can be accessed from the Github page for Coqui STT alongside the
1.3.0 release of Coqui at https://github.com/coqui-ai/STT/releases/tag/v1.3.0

https://github.com/coqui-ai/STT/releases/tag/v1.3.0


then plateaus. However, while the loss curve does to some extent follow that
expectation, it is flatter and in the end, it overfits completely.

Several methods and parameters were tested but none yielded the wanted
results. In the end, it was decided to both lower the learning rate substantially
to 0.0001 and increase the dropout rate to 0.3 which are the same parameters
as used by Commonvoice-FR contributors (2022).

Figure 5.1: Loss vs. epoch for different French models

This improved model had a much better loss curve than the original at-
tempts. This loss curve can also be seen in figure 5.1. Compared to earlier
attempts, this model also had a significantly better performance. Full results
will be discussed in section 5.4, but the French standalone model had a charac-
ter error rate of 11.9% while the French model based on the English model had
a character error rate of 14.9%. There are some interesting observations that
can be made by looking at these results. Most significantly is that the French
standalone model performed significantly better than the one made using trans-
fer learning. This is something that has been observed in other domains and
contexts before, notably by Virtanen et al. (2019).

5.3.3 Training models based on the English model
All of the models trained using the English (EN) model and English-French (EN-
FR) model used Coqui’s default settings. This means a dropout rate of 0.05
and a learning rate of 0.001. This seemed to yield effective results, comparable
to other models for the same languages. Therefore, no further hyper-parameter
optimisation was carried out.



5.3.4 Training models based on the French model
When models were trained using Coqui’s default parameters, the models were
unable to train properly. They followed an expected learning curve for a couple
of epochs and then got rapidly worse. Different parameters were tested, but the
ones that seemed to give the best results were a learning rate of 0.0001 and a
dropout rate of 0.3. Hence, all models trained on the French base model used
these parameters.

5.3.5 Overview of the loss during training
Following the optimisation of the hyper-parameters, all of the models trained
mostly as expected. The loss curves for the training processes also follow the
standard pattern to a satisfactory extent. The loss curves for all of the models
can be seen in figure 5.2.

Figure 5.2: Overview of the loss curves for the models

One thing to note with the results shown in figure 5.2 is the considerable
difference in training time between the models. Notably, the training times
for models trained using the French base model were considerably shorter than
their English-based counterparts. Why the training times are so much shorter
is unknown, but it is so frequent and consistent that it could warrant further
investigation in the future.



5.4 Evaluation
All of the models were tested using the evaluation script that comes with Coqui
along using the designated testing sets. The call to the evaluate script that was
used can be seen in snippet 5.3.

Snippet 5.3: eval.bash

1 python3 -m coqui_stt_training.evaluate \
2 --test_files /data/clips/prv_test.csv \
3 --test_batch_size 64 \
4 --alphabet_config_path /data/alphabet.txt \
5 --checkpoint_dir /export/checkpoints \
6 | tee /export/results/\$(date +%F-%R).txt

The parameters seen in snippet 5.3 follow the same naming convention
as those used in the training script. The --test_files flag (line 2) is used
to provide the files to use for testing. The --test_batch_size flag (line
3) is used to enable the script to process 64 files at a time instead of 1.
The --alphabet_config_path flag (line 4) is used to specify what charac-
ters the program is expected to find in the testing files. And finally the
--checkpoint_dir (line 5) is used to specify which model to test.

The output of this script is then piped to the Unix program tee which is
used to split the output of the evaluation to STDOUT and into a separate file
so that it could be accessed later. The filename is based on the current time so
that it will have a unique name.

5.4.1 Overview of the results
The word-error-rates (WERs), character-error-rates (CERs), and the loss value
from the evaluations can be seen in table 5.2. The models are named according
to which languages they are based on, so the models that are based on the
English model start with “EN”, the multilingual model “EN-FR”, and so forth.



Model WER CER Loss
EN 0.537 0.238 N/A
EN-BR 0.807 0.294 26.84
EN-CY 0.651 0.194 35.71
FR 0.369 0.119 26.45
FR-BR 0.655 0.222 20.24
FR-CY 0.604 0.189 35.60
EN-FR 0.467 0.149 31.87
EN-FR-BR 0.732 0.243 22.20
EN-FR-CY 0.640 0.194 35.88

Table 5.2: Overview of the word-error-rates (WER), character-error-rates
(CER), and loss for the different models

Since no language models were used, the most interesting metric is the
character-error-rate (CER) as this represents the models’ ability to produce
the correct sequences of letters the best.

As can be seen in table 5.2, the results varied quite a bit for the Breton
model while the Welsh models stayed pretty consistent regardless of the base
model. How these results compare to the state-of-the-art will be discussed in
section 5.5.

5.4.2 Comparing the results against the hypothesis
At first glance, it is clear that the Breton models saw a significant improvement
in the CERs and WERs when using the French models as opposed to the English
model.

Contrary to expectations which would stipulate that multilingual models
provide a better foundation for transfer learning, the results show that the
monolingual French model outperformed the English-French multilingual one.
Considering that this is only a single data point, it is not possible to draw any
firm conclusions based on these results, but they do raise some interesting ques-
tions. For example, given the performance of the monolingual model, it might
be that multilingual transfer learning has an adverse effect on the performance
of the model. It might also be that the performance of the base model plays a
role and that this is something that should be explored further.

However, to show whether there is any merit to the hypothesis that the
phonemic differences between of the base language and the target language can
impact the quality of the model the CERs of the models need to be compared
against the metrics that were extracted in section 4.3. This includes looking at
whether there is a correlation between the CERs of the models and the phoneme
overlap and Euclidean distance between the languages.



Comparing the CERs against the phoneme overlap

When we plot the CERs of the models against the percentage of phonemes in
the target language present in the base language, we get the plot in figure 5.3.

Figure 5.3: Plot showing the relationship between the CERs of the models and
the percentage of phonemes in the target language present in the base language.

Pearson’s correlation coefficient for this relationship is r = −.908 which is a
very strong negative correlation. The statistical significance of this correlation
is p = 0.012 which means that it is statistically significant. This seems to
underpin the hypothesis as if the languages have a higher overlap, we would
expect a lower CER and this shows that.

That being said, given the extreme outlier that is the Breton model based on
the English model, it might very well be that this makes this correlation much
higher and much more statistically significant than reality. Pearson’s correlation
coefficient is known to not be robust when extreme outliers are present (Devlin
et al., 1975). Given that the outlier is caused mainly by the stark difference
between Breton and English, it does not make sense to remove it in this context.
In order to properly investigate whether this data point is causing Person’s
correlation coefficient to overestimate the correlation, further data points would
have to be added.

Comparing the CERs against the Euclidean distance

Another metric that was gathered in 4.3 was the Euclidean distance between the
relative frequencies of the phonemes between the base language and the target



language. A plotted graph showing the correlation between the character error
rate and the euclidean distance can be seen in figure 5.4.

Figure 5.4: Plot showing the relationship between the CERs of the models and
Euclidean distance between the relative frequencies of phonemes in the base
language and target language

As can be seen in 5.4, there does not seem to be a strong correlation. Pear-
son’s correlation coefficient for this relationship is r = .502, however, the sta-
tistical significance is p = .310 meaning that this correlation is not statistically
significant.

Comparing the CERs against the number of unseen phonemes

The next relationship we will look at is the relationship between the CERs of
the models compared to the number of unseen phonemes. This refers to the
absolute number of phonemes in the target language that the base model have
not seen before. This metric is quite similar to the percentage of phonemes in
the target language that is also present in the base language, however, it does
differ in some key aspects. The most significant difference is that this metric
uses the absolute number of unseen phonemes as opposed to a percentage of
phonemes present. The relationship between CERs and the number of unseen
phonemes can be seen in figure 5.5.



Figure 5.5: Plot showing the relationship between the CERs of the models and
the number of unseen phonemes

Using Pearson’s correlation coefficient we can calculate that the correlation
of this relationship is very strong at r = .961. The statistical significance of this
is p = .002, which since it is lower than 0.05 makes this statistically significant.

That being said, similar to other metrics this suffers from a notable outlier
which probably inflates the correlation and the statistical significance signifi-
cantly. While it appears that there is a stronger likelihood of a correlation than
previous metrics, most of the points are however between 20% to 25% CER and
between 10 to 20 unseen phonemes. Given this cluster, it is possible that this
correlation goes away if further data points are added.

Comparing the CERs of the models against the CERs of the base
models

There is another way of analysing at these results which may explain these re-
sults. We can look at the CERs of the base models and how these are correlated
to the CERs of the Breton and Welsh models. If we plot this, we get the graph
that can be seen in figure 5.6. The data shown in figure 5.6 clearly shows that
there is a correlation between the CERs of the base models and the CERs of
the Breton models. While the Welsh model that is based on the French base
model did perform marginally better than the others, the same trend can not
be seen in the CERs of the Welsh models.



Figure 5.6: Graph showing the relationship between the CER of the base models
vs. the CER of the Breton and Welsh models.

This raises some questions as to whether the original hypothesis is true or
whether the underlying cause for the better performance is actually due to the
better base model used. The issue is that there are not enough data points to
draw any conclusive results. The only way of confirming whether this would be
the case is to extend the scope of the project and look at other languages as
well.

5.5 Evaluating the models up against existing
models

To put these results into perspective, we will look at how they compare to other
contemporary results and how they compare to the state-of-the-art for these
languages.

5.5.1 Evaluating the Welsh models against existing models
The models in Jones (2022) were tested using the Bangor University Language
Technology Unit’s test set called the Corpws Profi Adnabod Lleferydd (Speech
Recognition Test Corpus)6 (Jones et al., 2022). Farhat (2022) also developed
several acoustic models for Welsh and used the same testing set as Jones (2022).

6The dataset is available at the Language Technology Unit’s own Gitlab in-
stance at https://git.techiaith.bangor.ac.uk/data-porth-technolegau-iaith/
corpws-profi-adnabod-lleferydd/-/tree/master/

https://git.techiaith.bangor.ac.uk/data-porth-technolegau-iaith/corpws-profi-adnabod-lleferydd/-/tree/master/
https://git.techiaith.bangor.ac.uk/data-porth-technolegau-iaith/corpws-profi-adnabod-lleferydd/-/tree/master/


In order to be able to compare how the models developed for this project com-
pares to those models, it was decided to test the models using this dataset as
well.

The contents and the development of this dataset are explained further by
Jones (2022). An important thing to note about this dataset is that it is non-
verbatim. That means that grammar mistakes in speech have been corrected.
This makes the corpus less ideal for the purposes of testing a standalone acoustic
model, but despite this, it’ll make comparing the effectiveness of the different
models easier.

The Welsh model that was based on Coqui’s English model managed to
get a word error rate of 80.32% and a character error rate of 34.12%. This
outperforms the model created by Jones (2022) which had a word error rate
of 92.32% and a character error rate of 43.26%. It also outperforms the model
created Farhat (2022) which had a word error rate of 82.82% and a character
error rate of 38.52%.

It should be noted that both Jones (2020) and Farhat (2022) used older
versions of Common Voice, and that more data has been released since they
trained their models. Jones (2020) also developed several wav2vec2 (Baevski
et al., 2020) models that outperformed both their Coqui models, but also the
Welsh models trained for this project. It is clear, however, that transfer learning
did significantly benefit the models and better results were achieved using this
approach.

5.5.2 Evaluating the Breton models against existing mod-
els

The biggest improvement can be seen in the Breton models. The best publicly
available Breton models are the ones created by Tyers and Meyer (2021). Their
Breton model had a CER of 41.56% which was later improved to 37.71% by
optimising the hyperparameters. The three Breton models produced for this
project all performed better than this, and the Breton model that was trained
using the French monolingual base model performed the best achieving a CER
of 22%. Some of this improvement can be explained by the fact that Tyers and
Meyer (2021) used Common Voice 6.1 and this project used Common Voice 10
which includes new data. However, it is clear that transfer learning did benefit
the Breton models, especially when a French base model was used.

5.6 Summary and discussion
Overall, the majority of the results from this experiment were inconclusive.
While both the number of unseen phonemes and the percentage of phonemes
present in the target language also present in the base language metrics showed
a strong and statistically significant correlation when compared to the CERs of
the models, it is clear that these can not be fully trusted. Given the Pearson’s
correlation coefficient’s lack of robustness and the significant outliers, it is hard



to determine whether the trends that could be seen in the data were due to
noise or a genuine correlation. More data is required to definitively determine
whether there is any substance to the original hypothesis.

It is clear that transfer learning did benefit the models, and all of the models
produced for the project were either comparable with state-of-the-art or sub-
stantially better. This is especially true for Breton, where the models produced
for the project reduced the state-of-the-art character error rates from 37.71% to
22%. This improvement is important because it makes efficient speech-to-text
and transcription services possible for Breton, a language which has historically
been under-resourced.



Chapter 6

Training and Evaluating
Further Models

Due to the results from the experiment yielding inconclusive results and correla-
tions with questionable robustness, it was decided to expand the analysis further
by running the experiment with some additional languages. This chapter will
start off by reviewing what languages were selected and the reasons why. After
that, the chapter will explain how the metrics extracted in 4 were extracted
for Portuguese. Following that, the chapter will summarise the training process
and describe any issues that were encountered. The chapter will evaluate these
models and compare them against the previous results. By doing this, we can
determine whether the results found in the last chapter are genuine correlations
or simply a case of random chance. Once we have all of the results and the
impact they have on the previous findings have been determined, the chapter
will also go further in-depth to try to explain some of the findings that have
been uncovered.

6.1 Review of languages selected
To improve the robustness of the results, it was important to increase the number
of base languages as well as the number of target languages. Training a base
model is a tedious process due to the amount of data available. Therefore
it was decided that only adding one additional base language was the most
feasible approach. This would also free up time to add several additional target
languages as these have significantly shorter training times.

When it came to the selection of base language, it was decided to choose
a language that was a bit further removed from Welsh and Breton than both
French and English. However, the number of languages on Common Voice that
had a suitable amount of data was low and as such it was mostly a choice between
languages like Catalan and German. Since Catalan is fairly closely related to
French, it was decided to use German as the base language for this expanded
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experiment. German has about 1389 hours of validated data on Common Voice,
which is significantly more than French but is feasible to train the models within
a reasonable time.

When selecting the new set of test languages, it was important to keep two
things in mind. Firstly, the language needed to be a lower-resourced language,
and secondly, it needed to have a varied connection to the base languages. Three
languages were chosen from the ones that were available on Common Voice.

The first one was Romansh. Romansh is a Romance language located in
Switzerland meaning that it is related to languages such as French and Ital-
ian. Despite this, it is a unique and distinct language with many influences
from languages like German. Given that we have both French base models and
German base models, this language is in a unique position to provide some
interesting data due to being related to and influenced by both. Romansh is
usually split into several different dialects, two of which are available on Com-
mon Voice. These are Sursilvan Romansh which has approximately 6 hours of
validated data while the other is Vallader Romansh which has about 2 hours.
Because of its larger data size, it was decided to choose Sursilvan for this ex-
periment. There is, however, an argument that both could have been used, but
for simplicity’s sake, it was decided to only use one. Another interesting idea
for future research would also be to investigate transfer learning entirely within
the Romansh context to see if different dialects could all benefit from the larger
amount of data available for the Sursilvan dialect.

The second language chosen was Portuguese. Portuguese is interesting be-
cause it is one of the few Romance languages except French to have nasalised
vowels (Cruz-Ferreira, 1995). In addition to this, it also has a generally high
phonemic overlap with French. In terms of hypothesis, this language is interest-
ing, because if the hypothesis is true it is likely that we would expect Portuguese
to benefit from using a French base model as opposed to both English and Ger-
man. Portuguese has 120 hours of validated data on Common Voice making it
the largest of the target languages for this experiment having narrowly more
than Welsh.

The third and final language is Galician. Galician is a language from the
Galicia region of Spain. It is very closely related to Portuguese and shares many
linguistic and phonetic traits, and the two languages form a dialect continuum
on the western side of Iberia. Compared to Portuguese, Galician is much more
under-resourced having only 11 hours of validated data on Common Voice. This
means that it has slightly more hours than Breton, while Portuguese has ap-
proximately the same number of hours as Welsh. Given the similarities between
these two languages, any difference in the performance of models trained with
these two languages would likely be due to the additional data. This makes
it interesting because it provides a greater view into how the amount of data
impacts the models.



6.2 Extraction of metrics
One of the issues with Galician and Romansh is that due to the limited amount
of resources available for these languages, there are not any pronunciation dic-
tionaries available online. This means that it is extremely challenging to do the
same analysis as was carried out in the last chapter using these two languages.
This problem was known when selecting the languages and effectively means
that they can not be used to evaluate the original hypothesis. That being said,
they do provide valuable insight in other contexts such as when measuring the
impact of the base model’s CER on the CER of the models.

Pronunciation dictionaries do exist for both Portuguese and German. The
German pronunciation dictionary that was used was made by Minixhofer (2019)
and contains about 365k words in IPA. This dictionary uses standard German
for its transcriptions.

The Portuguese dictionary that was used was made by Mendonça and Aluí-
sio (2014). There are some points to note about this dictionary, however. Por-
tuguese, since it is spoken across the world in different countries, have many
of distinct varieties. Most notably for our purposes are Brazilian Portuguese
and Portuguese Portuguese. The pronunciation dictionary used for this project
used the Brazilian variety and is centred around the dialect spoken in São
Paulo. Since there is a difference in how Brazilian Portuguese and Portuguese
Portuguese are pronounced, this means that we might lose some information.
Hopefully, this should not impact the results too drastically.

Overview of the extract

Before we look at the results, let us look at how well the script was able to
convert tokens to IPA and how many phonemes it found for each language. A
summary of this can be seen in table 6.1.

Language % Converted Phonemes
found

Breton 72.77% 68
English 96.36% 38
French 87.73% 82
German 66.21% 80
Portuguese 48.60% 37
Welsh 98.39% 43

Table 6.1: An updated overview of how many phonemes were found and how
many tokens were successfully converted to IPA.

As can be seen in table 6.1, the script performed substantially worse at
converting German and Portuguese to IPA in contrast to the previous languages.
This is especially true for Portuguese where less than 50% of all tokens were
successfully converted. Since all of the tokens were converted to lowercase so as



to make the conversion case-insensitive, this indicates that many of the tokens
were not present in the pronunciation dictionaries or that the tokenisation was
less than optimal. In the case of Portuguese, it is unlikely that poor tokenisation
is the problem. Portuguese is written in a similar way to most other European
languages using the Latin alphabet. Therefore there should not be any major
difference between Portuguese and other languages. Hence, it is likely that a
large number of tokens were unable to be converted properly. Whether this
is because of missing diacritics or a difference in written standard is difficult
to say without further investigation. The conversion rate for German is also
noticeably lower than the other languages. Again, this is likely due to a failure
to look up the tokens properly. To definitively determine whether this is because
of a difference in written standard, missing tokens or something else requires
further investigation. Despite these issues, however, there should still be enough
data for both languages to base the analysis on.

One thing to note as well is the lower number of phonemes for Portuguese.
Similar to English and Welsh, it is likely that Portuguese is more broadly tran-
scribed than its counterparts, meaning that allophones are represented by one
phoneme as opposed to multiple which would have been the case if the words
were narrowly transcribed. This might have contributed to these results being
more unreliable than what would otherwise have been the case.

Overview of extracted results

The extraction of metrics was carried out the same way as in chapter 4, and the
same scripts were used. This produced the results that can be seen in table 6.2.



Target Base Phoneme Euclidean Missing
overlap distance phonemes

br de 79.41% 0.1721 14
cy de 83.72% 0.1668 7
pt de 91.89% 0.1893 3
br en 39.71% 0.2134 41
cy en 76.74% 0.1485 10
pt en 64.86% 0.2320 13
de en 46.25% 0.1563 43
fr en 45.12% 0.2413 45
br en-de 80.88% 0.1892 13
cy en-de 86.05% 0.1366 6
pt en-de 94.59% 0.2085 2
br en-fr 76.47% 0.1696 16
cy en-fr 83.72% 0.1291 7
pt en-fr 89.19% 0.1867 4
br fr 75.00% 0.1677 17
cy fr 81.40% 0.2117 8
pt fr 89.19% 0.1696 4

Table 6.2: Table showing all of the extracted metrics for all models created for
the project

The results as seen in table 6.2 generally follow expectations, though there
are a couple of things to note. German seemed to be a very good phoneme
overlap with both Welsh and Portuguese. This was in many ways surprising,
but likely boils downs to the fact that there were a lot of phonemes extracted
from the German dataset meaning the chance of overlap is quite high.

If the hypothesis is true, then if the phoneme overlap and the absolute num-
ber of missing phonemes are the most important metrics then German would be
the best language to base Portuguese on. Otherwise, if the Euclidean distance
is the most important, French would be the best. This was fairly unexpected.

For Welsh and Breton, the situation also changes. Both of these languages
have a high phoneme overlap and a low number of unseen phonemes when
compared to German and are likely to perform well using a German model if
the hypothesis is true.

6.3 Training the models
The models were trained in the same way as described in section 5.3. Three
models were created for each language, one based on Coqui’s English model,
one on the French model, and one on the French model which is based on the
English model. This increased the total amount of models from 6 to 15 in order
to provide some more data points.



6.3.1 Training the base models
The German model trained without any significant issues. By this point, how-
ever, it was becoming increasingly clear that most models performed better when
the learning rate had been reduced and the dropout rate had been increased.
This unfortunately raises the possibility that some of the earlier models are not
well optimised.

Figure 6.1: Overview of the loss curves for the two German base models

The loss curves for the two German base models can be seen in figure 6.1. As
can be seen on that graph, the English-German model took significantly longer
to converge than its monolingual counterpart. (Please note the log scale on the
x-axis).

6.3.2 Training the other models
The training of the Breton, Welsh, Romansh, and Galician models had no major
issues, and they all resulted in adequately efficient models. They were all trained
using a dropout rate of 0.3 and a learning rate of 0.001.

Portuguese, however, was more difficult to get right. Firstly, due to issues
with the dataset, there are entries that do not seem to work properly. This
means that it is not possible to split the validated set into custom splits using
the original scripts that were developed. Hence, the predefined splits, which
might be less than ideal since they are missing a lot of data, had to be used.

The second issue is due to the poor performance of the models. Regardless
of the parameters used, the models did not improve much further than the first



attempts. Only lowering the learning rate to 0.0001 made a difference, but it
also increased the training time significantly for almost no benefit. A quick look
at the data does provide some potential reasons for the poor performance of
Portuguese. Based on the accent tags in the dataset, it seems as if the training
set is exclusively made up of Brazilian Portuguese, while only the testing set
and to a certain degree the validation set has any Portuguese Portuguese data.
Due to the majority of entries not being tagged, it is hard to know for certain
whether this is the case, but the tags that are there seem to suggest that the
sets are quite imbalanced.

6.4 Evaluation with the new models
This section will look at the same relationships as those that were looked at in
the previous chapter, but with the new and extended dataset. The goal is to
uncover whether the results in the previous chapter actually hold up to scrutiny
or whether any perceived correlation is simply due to random chance.

6.4.1 Overview of results
Including the six original target models, a total of 15 target models were trained.
These can be seen in table 6.3 alongside the 5 base models. When analysing
such a large table, it is difficult to ingest what the most notable entries are.
Therefore we will briefly analyse how these results impact the results from the
original analysis, how they compare to the state-of-the-art and other aspects
that are of interest.



Model WER CER Loss
DE 29.12% 7.01% 16.47
DE-BR 65.75% 22.51% 20.84
DE-CY 58.88% 18.19% 34.07
DE-GL 78.71% 23.14% 38.31
DE-PT 72.29% 26.23% 36.40
DE-RM 72.77% 19.78% 36.42
EN 53.68% 23.83% N/A
EN-BR 80.71% 29.37% 26.84
EN-CY 65.11% 19.39% 35.71
EN-DE 53.32% 16.00% 35.81
EN-DE-BR 70.24% 23.67% 20.80
EN-DE-CY 54.68% 16.01% 28.87
EN-DE-GL 76.25% 21.02% 34.51
EN-DE-PT 71.94% 24.92% 33.74
EN-DE-RM 68.98% 17.51% 31.19
EN-FR 46.70% 14.87% 31.87
EN-FR-BR 73.16% 24.28% 22.20
EN-FR-CY 64.04% 19.43% 35.88
EN-FR-GL 85.98% 26.19% 45.49
EN-FR-PT 83.63% 31.53% 44.33
EN-FR-RM 83.67% 26.84% 49.63
EN-GL 91.23% 30.44% 53.31
EN-PT 83.80% 31.28% 43.29
EN-RM 91.84% 32.41% 57.62
FR 36.86% 11.93% 26.45
FR-BR 65.47% 22.21% 20.24
FR-CY 60.44% 18.86% 35.60
FR-GL 84.35% 26.24% 46.65
FR-PT 73.87% 26.69% 37.82
FR-RM 88.05% 27.94% 50.41

Table 6.3: A summary of the performance of all of the models trained for the
project

6.4.2 Comparing the CERs against the phoneme overlap
The first metric that we will analyse is the phoneme overlap. In the original
analysis, this showed a strong negative correlation at r = −.906 and a statistical
significance of p = .012. The extended data can be seen in figure 6.2.



Figure 6.2: A plot showing the relationship between the CER of the models and
the phoneme overlap.

As can be seen in figure 6.2, it is more clear now than in the original set
of data that there is not a strong correlation between the CER of the models
and the phoneme overlap between the target language and the base language.
Calculating the Pearson’s correlation coefficient for this relationship, we find
that the correlation is r = .159 and a statistical significant of p = .541. This
effectively shows that the original results were inflated due to the non-robustness
of Pearson’s correlation coefficient. Not only that, it is undoubtedly a null result
and it disproves the original hypothesis.

6.4.3 Comparing the CERs against the Euclidean distance
The second metric that we will analyse is the Euclidean distance between the
base language and the target language. when the original analysis was carried
out, this relationship showed a clear null result, having a correlation coefficient
of r = .502 and a statistical significance of p = .310. A plot showing the new
data can be seen in figure 6.3.



Figure 6.3: A plot showing the relationship between the CER of the models and
the Euclidean distance.

Examining the results as seen in 6.3, it is evident that the original results still
stand and that there still is not a statistically significant correlation. While it
appears that there might be an upwards trend, when looking at individual lan-
guages, it can plainly be seen that the results are to a certain extent random in
nature. When calculating the Pearson’s correlation coefficient for this relation-
ship, we find that it has a correlation of p = .360 and a statistical significance of
p = .156. This correlation is very weak and not statistically significant. Similar
to the phoneme overlap discussed above, this disproves the original hypothesis
and shows that the original results do not hold up to more in-depth scrutiny.

Despite that, it should be noted that these results were the closest to showing
a correlation. However, it is unlikely that additional data would change the
outcome of this, but it is worth keeping in mind for further investigation in the
future.

6.4.4 Comparing the CERs against the number of unseen
phonemes

The last of the main metrics that we will examine is the absolute number of
unseen phonemes (i.e the absolute number of phonemes present in the target
language that is not present in the base language). The original analysis showed
that this correlation was the strongest correlation having a Pearson’s correlation
coefficient of r = .961 and a statistical significance of p = .002. While the
original plot was the most promising of the original set of relationships, it was
transparent that there were significant outliers that were likely inflating both



the correlation coefficient and the statistical significance of the relations. The
updated plot with the new data can be seen in 6.4.

Figure 6.4: A plot showing the relationship between the CER of the models and
the absolute number of unseen phonemes.

Even with the new data, there are still significant outliers as seen in figure
6.4. Despite the outlier, however, it still is not enough to skew the results to such
an extent that it shows a correlation between the metric and the CER. Pear-
son’s correlation coefficient for this relationship is r = −.264 and the statistical
significance of this correlation is p = .306.

This means that there is no statistically significant correlation and unexpect-
edly the original results did not hold up against further scrutiny. Similar to the
previous two metrics discussed, this unquestionably disproves the original hy-
pothesis and shows that there is no correlation between a model’s performance
and the base language used.

6.4.5 Summary of findings, limitations, and caveats
It is clear that all of the metrics result in null results and effectively disprove
the original hypothesis. There are some caveats, however. Due to the nature of
machine learning and the need for hyper-parameter optimisation, and random
chance, it might very well be that some of the models are not as optimal as
they could have been. Looking only at the result that Tyers and Meyer (2021)
obtained, just optimising the hyper-parameters alone could improve the per-
formance of models by up to 15%. While hyper-parameters have been tuned
during this project in an attempt to yield the best possible models, there is



undoubtedly room for improvement.
There is also the issue of accuracy when it comes to the metrics chosen and

how they were extracted. There is definitely a margin of error in these results
and this might be quite substantial. So while all of the metrics resulted in null
results, this should, in some ways, be taken with a pinch of salt. There are so
many variables at play when dealing with machine learning, and results like the
ones observed for Breton are hard to explain unless there is some characteristic
with French that makes it such a good language to base Breton models on.

This should not be interpreted as there being any merit to the hypothesis,
as based on the findings there is not. Nevertheless, it is important to stress that
the results have an abnormally high margin of error.

6.4.6 Comparing the CERs against the CERs of the base
models

One relationship that was of interest during the original experiment was the
relationship between the CER of the base model vs. the CER of the target
models. While this did not seem to affect the Welsh models, there was a clear
linear relationship between the performance of the Breton models and the per-
formance of the base models. The only way to investigate whether there is a
genuine relationship is to gather additional data. By adding two German base
models and three additional target languages, the number of data points has
increased from six to 25. An updated plot showing the relationship with the
new data can be seen in figure 6.5.

Figure 6.5: A plot showing the relationship between the CER of the base model
and the CER of the target models



The relationship that can be seen in figure 6.5, contains some noteworthy
features. Firstly, all languages, with the notable exception of Welsh, seem to
follow the same pattern as Breton to a certain extent. It is also clear that
the English-German model (second column from the right) sticks out promi-
nently. Why this is the case is unclear. It might genuinely be that this model
provided a well-balanced base model for most languages to train a model on.
It might be that the training and testing sets accidentally got re-split before
these models were trained. However, models based on the German model and
English-German model were trained by language in pairs. Hence, if this was the
case we would have expected the German results (furthest to the left) to also
perform better, which they do not.

Pearson’s correlation coefficient for this relationship is r = .142 which is a
negligible correlation, and the statistical significance of this is p = .479 meaning
that the correlation is not statistically significant.

There is one issue with this plot, however. Since the amount of training
data varies substantially between the languages, comparing the raw CERs of
the target models does not adequately compensate for this difference. In order
to compensate for this difference, it was decided to normalise the CERs of the
target models. This was done by setting the CER for the models trained using
an English model to 1, then calculating the ratio compared to this for the rest
of the models. That produced the plot that can be seen in figure 6.6.

Figure 6.6: A plot showing the relationship between the CER of the base model
and the CER of the target models

This normalised version of the plot reveals an interesting trend. There does
seem to be a significant positive correlation between the CER of the base models



and the target models. When calculating Pearson’s correlation coefficient for the
relationship, we find that the correlation is r = .554 which is a strong correlation.
Not only that, the statistical significance of this correlation is p = .003 meaning
that the correlation is statistically significant.

This is intriguing. There are a couple of explanations as to why this is
the case. The most obvious one is that there are some intrinsic characteristics
of the patterns that the model learns that are universally applicable. This
makes sense in some ways because it is this universally applicable aspect that
transfer learning is exploiting. Effectively, this would indicate that when a
model becomes better at transcribing audio in the language it was designed for,
it also becomes better suited and better capable of transcribing any audio to a
certain extent.

The models trained using the English-German model still sticks out promi-
nently. As explained earlier, there are many reasons why this might be the case,
but there is no clear answer with the data that we have available.

6.5 How the models compare to contemporary
models

This section will briefly go through models created for the new languages and
see how they compare to the state-of-the-art for these languages.

6.5.1 German models compared to the state-of-the-art
There are two German Coqui models available from Coqui’s websites, one by
Agarwal and Zesch (2019) and one by Bermuth et al. (2021). The performance
metrics for the model made by Agarwal and Zesch (2019) only lists the word
error rate. Since this project has exclusively focused on the performance of the
acoustic models and since the models do not have a language model, the results
for this project is not comparable with Agarwal and Zesch (2019).

The German model trained for this project had a character error rate of
7.0%. The model trained by Bermuth et al. (2021) had a character error rate
of 5.6% when testing on the Common Voice testing set. That means that the
model trained for this project is slightly worse than the one trained by Bermuth
et al. (2021). That being said, their model was trained using data from 17
different corpora in addition to the Common Voice dataset, so this is not very
surprising.

6.5.2 Galician models compared to the state-of-the-art
There do not seem to be any available monolingual Galician models online.
Both the models trained by Dieguez-Tirado et al. (2005) and Docio-Fernandez
and Garcia-Mateo (2018) are Spanish-Galician bilingual models. As with some
other models, they only list the word error rates which is not comparable in our



case. Therefore, there do not seem to be Galician monolingual models that are
comparable to the ones developed here.

6.5.3 Portuguese models compared to the state-of-the-art
Portuguese was one of the languages that Tyers and Meyer (2021) used in their
experiment. The best character error rate they got without the addition of a
language model was 26.69% (They managed to get it down to 20.10% using a
language model) The best Portuguese model trained for this project (EN-DE-
PT) had a character error rate of 24.92%. This is comparable to the models
trained by Tyers and Meyer (2021) and does not differ in any statistically sig-
nificant way.

6.5.4 Romansh models compared to the state-of-the-art
Romansh was also one of the languages that Tyers and Meyer (2021) used
in their experiment. In fact, they trained models for both the Sursilvan and
Vallader dialects of Romansh. Due to Sursilvan having more data on Common
Voice, it was decided for this project to focus on this dialect. The best model
that Tyers and Meyer (2021) trained for the Sursilvan dialect without a language
model had a character error rate of 23.88% (18.93% with a LM). The best
Romansh model trained for this project (EN-DE-RM) had a character error
rate of 17.51% which is not only significantly better than the model trained
by Tyers and Meyer (2021), but also slightly better than their model with a
language model. It is clear that Romansh did significantly benefit from transfer
learning, and that effective models for the language are very much a possibility.

6.6 On the lasting impact of the base language
on the models

Both the French and German models had a worse performance when transfer
learning was used. The exact reason is difficult to definitively answer, however,
it does seem to indicate that for non-lower-resourced languages, transfer learning
can have an adverse effect on the performance of the models.

This is likely due to the presence of the base model, even after hours of
training on a different large data set. Both German and French were trained on
hundreds of hours of data, and German even over a thousand hours. Despite
this, the training was unable to completely overwhelm the influence of the base
model. This raises some interesting questions, like how much data is required
for models to become adversely affected by transfer learning and whether there
is a way to overcome this adverse effect. These are definitely questions that
could be investigated by future research and could be beneficial for the field as
a whole.



6.7 Summary and discussion
The experiment’s scope was greatly expanded to improve the robustness of the
results and limit the negative impact of the wide margin of error. By doing
this, it was revealed that the original results did not stand up to additional
scrutiny, and all of the statistically significant correlations found in the original
analysis became not statistically significant. This underlines the importance of
questioning the initial results and especially the robustness of the correlation
calculations.

It was found that there is a statistically significant correlation between the
base model’s performance in its own domain and the performance of the mod-
els that use this model as a base. This might be helpful to explain one of
the contributing factors determining the effectiveness of transfer learning in a
speech-to-text context.



Chapter 7

Conclusion and Future
Work

In this chapter, we will review the work that has been undertaken and the find-
ings of the dissertation. We will also look at the research questions, hypotheses,
aims, and objectives to determine whether the dissertation has fulfilled its aims.
The limitations of the work will also be laid out and future work will be dis-
cussed.

7.1 Summary and conclusions
The dissertation first set out to quantify the relationship between different
languages. This was achieved by extracting information about the phonemes
present in the training data and comparing the results with other languages.
When this work was carried out, it was also uncovered that the pre-defined
data split in Common Voice makes poor use of the available data and that
custom splits had to be created.

Several base models were trained for English and French, and these models
were then used as a base for Welsh and Breton models to be trained on. Com-
mon Voice was used as the data source for these models and Coqui STT was used
has the STT framework. When the results were analysed, the dissertation orig-
inally found some statistically significant correlations between the relationship
between the languages and the performance of the models. However, when the
experiment was expanded to include German, Romansh, Portuguese, and Gali-
cian, these correlations went away. The dissertation has therefore been unable
to show whether there is a correlation between the performance of the mod-
els and the relationship between the languages. The dissertation has, however,
shown that there is a statistically significant correlation between the character
error rate of the base model and the character error rate of the complete models.

It is clear that transfer learning substantially improves models for lower-
resourced languages. The method used in this dissertation enables effective
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models to be created for these languages without the vast amount of data that
is available for other languages. This lowers the barrier of entry for tools and ser-
vices to be developed for lower-resourced languages. Breton and Romansh saw
significant improvement when compared to state-of-the-art while Portuguese
saw a small improvement.

7.2 Review of research questions and hypotheses
There was one main research question that this dissertation set out to answer,
and that was whether the relationship between the base language and the target
language affects the performance of the complete models. This dissertation has
shown that there is no statistically significant correlation between the perfor-
mance of the models and the relationship between the languages. Therefore, the
hypothesis (H1) can not definitely be shown to be true. Additionally, this means
that the null hypothesis (H0), which states that the relationship between the
languages does not impact the performance of the models, holds true based on
these results. Given the abnormally high margin of error in this experiment, this
does not definitively disprove the original hypothesis H1, but the dissertation is
unable to sufficiently determine whether there is a basis for the hypothesis.

Despite this, the dissertation has shown that there is a correlation between
the performance of the base model and the target model. This shows that
models that perform well in their own domain are better suited as base models
to be used in transfer learning.

7.3 Review of aim and objectives
The aim of the dissertation was to improve speech-to-text models for lower-
resourced language and to explore ways of optimising data utilisation for trans-
fer learning. Looking at the performance of the models trained for this project,
it is clear that transfer learning does in certain contexts substantially improve
model performance compared to the state-of-the-art. For example, for Breton,
the character error rates were lowered from 37% to 22% by using this method.
When character error rates get down to that level, speech-to-text models be-
come much more useful and practical. This not only significantly lowers the
barrier of entry for technologies like speech-to-text for these languages, but
they provide invaluable tools and services to different communities. Improving
accessibility services for speakers of these languages is of vital importance and
any improvement made to these services is of incredible value. It is fair to say
that for especially Breton and Romansh, this dissertation succeeded in showing
that transfer learning can be efficiently used to provide useful models for lower-
resourced languages. In this way, the dissertation clearly fulfilled in achieving
its aim.

There were also four concrete objectives that the dissertation set out to
achieve. The first one was to create a way of extracting information about the



relationship between two languages. As described in chapter 4 this objective
was successfully achieved.

The second one was to train bespoke and novel models for several lower-
resourced languages using transfer learning. In total, 25 models were trained
using transfer learning for several lower-resourced languages. For Breton and
Romansh, the models trained significantly outperformed the state-of-the-art.
For Galician, no available monolingual speech-to-text models exist, hence the
models trained for this project provide a benchmark for any future development
within this area. And for Welsh and Portuguese, the models were comparable
with existing state-of-the-art. All in all, the project improved upon the state-
of-the-art and created novel models for lower-resourced languages that did not
have it before. Therefore, the project did succeed in fulfilling this objective.

The third objective was to investigate whether there is a correlation between
the relationship between the languages and the performance of the models. Even
though the project was unable to definitively determine whether there is a corre-
lation or not due to the null results, the project did achieve this objective. More
knowledge about what makes effective transfer learning models were uncovered.
That in itself is an achievement in terms of the fulfilment of this objective, es-
pecially since the knowledge gained from fulfilling objective three provided the
basis for the fulfilment of objective four.

The fourth objective was to explore whether there are any other contributing
factors that affect the performance of the models. The analysis carried out in
this project uncovered that there is a strong correlation between the performance
of the base model and the performance of the target model. This is interesting
because it seems to suggest that a model’s ability to perform its learning task Ts

in its own domain Ds makes it better suited to be used as a base as it improves
the target model’s ability to carry out its learning task Tt in its domain Dt.
There is definitively more work to be carried out with respect to objective four,
but the work undertaken here provides a good basis for more work to be done
in the future.

7.4 Limitations
This dissertation has some significant limitations. Firstly, only three base lan-
guages and three target languages were tested. While this provided many data
points, it is likely this is not enough to definitively answer the original research
question due to the significant margin of error.

The second, and most important limitation, is the margin of error in these
results. Due to the time-consuming nature of training and optimising models
and the random element to training the models, it is likely that the models while
good are sub-optimal. This makes any definitive analysis difficult, especially in
the absence of more data, which of course would be extremely time-consuming
to acquire. Add to that the margin of error introduced by the difference in how
broad or narrow the transcriptions are, and it becomes even more difficult.

This is definitely the biggest limitation of the dissertation. Despite that,



the dissertation did go beyond the original scope in an attempt to lessen the
effect of this, and by doing so made the results more robust and reliable. With
more time and resources, fully optimising the models, improving the metric
extraction process, and getting more reliable results could have been possible,
but unfortunately the project had neither.

7.5 Future work
The results in the dissertation did in many ways not adequately and definitively
answer the original research question. There is clearly a relationship between
French and Breton that makes French better suited to be used as a base model
for Breton than English. While the overall results are inconclusive and no
statistically significant correlations could be shown, this trend was completely
in-line with the original hypothesis and the original idea for the dissertation.
There is definitely more work to be undertaken in this field, especially in relation
to lower-resourced languages.

This dissertation focused entirely on the performance of the acoustic mod-
els. Despite this, there are several questions that still remain in relation to
how transfer learning can be used most effectively to aid in the creation of ef-
fective models when language models are included. One of these questions is
how to best utilise data available for one dialect of a language to aim in the
development of models for a lesser-resourced dialect of the same language. It
remains to be seen whether it is best to create bespoke models for each dialect
or whether it is beneficial to share either an acoustic model, language model,
or both. It might very well be that by using a combined acoustic model and a
bespoke language model for each dialect you are able to more efficiently utilise
the available data for these languages. This is something that existing literature
does not adequately answer, and it is something that should be investigated in
future research.

The field is moving forward, and effective models are becoming available for
lower-resourced languages where those models were once considered impractical
due to the lack of data. There is always room for improvement and room for
new methodologies to be devised so that the limited data can be more effectively
utilised. Therefore, the amount of future work required is vast and existing
literature and this dissertation are only scratching the surface of the possible.
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